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SUMMARY 

A new finite differenoe scheme for the convection-diffusion equation with variable coefficients is 
proposed. The difference scheme is defined on a single square cell of size 2h over a 9-point stencil and 
has a truncation error of order h4. The resulting system of equations can be solved by iterative 
methods. Numerical results of some test problems are given. 
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1. INTRODUCTION 

In this paper we consider the convection-diffusion equation 

This equation often appears in the description of transport phenomena. The magnitudes of 
p ( x ,  y) and q ( x ,  y )  determine the ratio of the convection to diffusion. In many problems of 
practical interest the convective terms dominate the diffusion. Numerical simulation of (1) 
becomes increasingly difficult as the ratio of the convection to diffusion increases. 

When the equation (1) is discretized using central differences, the resulting scheme, called 
the CDS, has a truncation error of order h2. In the case of CDS, iterative methods for 
solving the resulting system of linear equations do not converge when the convective terms 
dominate and the cell Reynolds number is greater than a certain constant. In addition, direct 
methods for solving the system of linear equations may give erroneous results. If the 
convective terms are approximated by suitable forward or backward differences and the 
diffusion terms by central differences, the resulting scheme is called the ‘upwind’ or the 
‘upstream’ scheme or the UDS. There are several variations of UDS and also combinations 
of the CDS and the UDS schemes. The UDS introduces artificial viscosity and hence the 
results are in error when the convection dominates. Both the truncation and the discretiza- 
tion error of UDS are of order h and hence a very fine mesh is needed if accurate results are 
required. Such a refinement of the mesh is often uneconomical. 
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Recently, we proposed a new finite difference scheme for the special case of equation (1) 
where p and q are constants.' In this paper, we present a generalization of the scheme to the 
case of variable coefficients p ( x ,  y)  and q ( x ,  y). The new scheme has a truncation error of 
order h4 and the resulting system of linear equations can be solved by iterative methods even 
for large absolute values of p ( x ,  y)  and q ( x ,  y). 

The truncation error of our scheme, as given in the Appendix, is of order h4. The 
coefficients of the non-diagonal terms in the difference equation do not have the same sign 
for all values of p ( x ,  y)  and q ( x ,  y) ,  therefore it is not possible to predict the order of the 
discretization error from that of the truncation error using the theoretical results known so 
far. There are some difference schemes for which the order of the discretization error is 
reduced by 1 as the transport number becomes large.2 However, from the numerical results 
of several test problems, it appears that this is not the case for our method. The order of 
discretization error is defined for the asymptotic case when the mesh size h -+ 0. The 
numerical estimates of the order determined from the errors calculated by using two 
different mesh sizes may not reach its asymptotic value as long as the derivatives appearing 
in the expression for the truncation error vary with the change in the mesh. This is indeed 
the case when the transport number is large. A better estimate of the order of the 
discretization error is obtained in such cases by refining the mesh. From the numerical results 
we conjecture that the order of our method is between 3 and 4. 

We have solved several test problems using our scheme and also the UDS and the CDS. In 
almost all cases our scheme produced better results for a given mesh size. Only those 
schemes which are designed on the basis of the exact solution of a particular p r ~ b l e r n ~ . ~  give 
better results when the mesh is crude. Such schemes are a lot more complicated and difficult 
to implement. The rate at which the error decreases as the mesh is refined is not as fast as 
that of our scheme, and hence our scheme gives better results as the mesh is refined. 

In the scheme proposed here, the cofficients can be computed easily when the grid is 
uniform. Our procedure can be extended to irregular meshes. In such cases, the difference 
scheme is not obtained explicity for each mesh point but is computed as the difference 
equations are a~sembled.~ We have generalized our procedure to the case of the diffusion- 
convection equation when the diffusion coefficients are variable, and the resulting scheme 
has been applied to some problems of flows in porous media. The preliminary results of 
these extensions are quite promising and will be reported in the future. In this paper, we 
restrict our attention to the equation (1) and regular meshes. 

In the derivation of the difference scheme, the solution u(x, y)  is first expressed locally on 
a mesh element in terms of a linear combination of the basis functions which are chosen to 
be polynomials in the present case. The functions p ( x ,  y) ,  q ( x ,  y) and f(x, y)  are expanded in 
a similar manner. A set of linear equations for the unknown coefficients in the expansion of 
u(x, y)  are obtained by demanding that the differential equation (1) be satisfied locally. 
Additional equations are obtained by interpolating the solution over a set of mesh points 
which lie on the cell. This technique has been used to obtain single cell high order schemes 
for the Poisson, the Helmholtz, the biharmonic and other linear  equation^.^.^ 

The difference scheme derived here is a 9-point scheme. Only those mesh points which lie 
on a single square cell of side 2h are involved, thereby keeping the bandwidth as small as 
possible for the order of the truncation error achieved. No special formulae are needed for 
points near the boundary. 

The new finite difference scheme for equation (1) is presented in the next section. Some 
details of its derivation are given in the Appendix. The results of numerical experiments with 
this scheme are given in Section 3. 
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2. THE FINITE DIFFERENCE SCHEME 

The finite difference formula for a mesh point (x, y) which is denoted by ‘0’ in Figure 1 
involves the other eight mesh points at (x f h, y), (x, y f h),  (x f h, y f h) .  These points are 
denoted either by numbers 1-8 or by letters showing their directions with respect to the 
point ‘0’ as in Figure 1. The difference formula involves the coefficients p,i,j and ci,i which 
appear in the expansions of p(x ,y) ,  q ( x , y )  and f (x ,y )  along with the nodal values 
u k  = u(&, yk) for k = 0,1,2,  . . . . Alternatively, the coefficients in the expansion of the 
known functions can be expressed in terms of their partial derivatives. In practice it is more 
convenient to use the nodal values of the known functions rather than their derivatives. 
Therefore, an alternative formulation of the difference formula involving the nodal values of 

The fourth order difference approximation of equation (1) is given by (see equation 19 in 
P(X, Y),  q(x,  Y) and f(x, Y)  is also given. 

the Appendix) 
8 

(2) 
h4 

akuk = 6c0,0h2f(C2.0+C0,2)h4f(h0,0Cl,0+ ~ O , O c O , l )  5 
k =O 

where 
h3 
2 
h3 
2 
h3 
2 

h3 
2 

CXl=CY,=4+2hho,o+ h2R,+- R6 

C Y ~  (YN = 4 + 2h~o.o + h2R4+- R5 

a3 (Yw = 4-  2hhO.o + h2R3 -- R6 

01s = 4 - 2h~0,o  + h2R4-- R5 

-20 - h2R1 
and where 
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S SE 

Figure 1. Labelling of grid points 

Replacing Ai,i, pi,i and ci,i in terms of the nodal values of the functions p(x, y), q(x, y )  and 
f(x, y)  we get an alternative finite difference scheme given by 

h 
2 

ag = a m  = 1 +- (PO+ 9,) + R7 
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and where 

Note that both the difference schemes (2) and (5 )  reduce to the scheme given in Reference 
1 when p ( x ,  y)  and q(x, y) are constants. 

3. NUMERICALRESULTS 

Numerical results for several test problems have been obtained by using the two 9-point 
schemes given in (2) and (5). The scheme (2) involves the derivatives of the functions p ( x ,  y), 
q(x, y) and f ( x ,  y) whereas the scheme (5) involves only the nodal values of these functions. 
The results obtained by these two schemes do not differ significantly as far as the order of the 
maximum errors are concerned. Hence the results obtained by using the scheme (S), which is 
more useful in practice, are reported here. This scheme is called the single cell high order 
scheme or SCHOS in the sequel. 
All test problems given here are solved on a unit square [O,  l]X[O, 13 using a uniform 

mesh h. Boundary values of the solutions are assumed to be known. The system of linear 
equations is solved by using the successive over-relaxation (SOR) iterative method. Some- 
times it is necessary to use a relaxation parameter less than 1 with the CDS. The 
convergence criterion for the iteration was chosen to be All the calculations were done 
in single precision on a Dec 20 or an IBM 4341. 

Test problem 1 

Consider the boundary value problem 

- E ( Y ,  + uyy)+ u, = 0, 0 5 x , y S l  
u(x, 0) = 0, u(x, 1) = 0, O l X S l  

u(0, y) =sin wy, O s y s l  u(1, y )  = 2 sin wy, 

Comparison of (6) and (1) shows that - p ( x ,  y) = 1 / ~  =P(say), q(x, y)=O and f(x, y)=O. The 
exact solution 

u = ePx/' sin wy[2e-P/2 sinh a x  + sinh u( 1 - x)]/sinh u 

where a2 = r2+ P2/4, shows the presence of a boundary layer near x = 1 whose thickness is 
of order 1/P for P large. The boundary layer is expected to affect the numerical results 
adversely as P increases. 

This problem has been studied by G a ~ d a n d , ~  who proposed a special five point stencil 
involving modified Bessel functions. In Tables 1-111 we give some results for this problem. 

Table I. Maximum relative errors for problem 1, 
h = 1/32 

P UDS CDS SCHOS 

10 0-9166(-1) 0*4537(-2) 0*6011(-4) 
20 0-1262 0*1576(-1) 0*1399(-3) 
40 0.1686 0.5925(-1) 0.1511(-2) 

100 0.2264 0-3002 0.3517(-1) 
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Table 11. Maximum absolute error and the estimated orders 
for problem 1 

P h-' CDS Order SCHOS Order 

40 8 0.5122 0.1256 
16 0.2310 1.15 0.2009(-1) 2.65 
32 0.6723(-1) 1.78 0-1712(-2) 3.55 

16 0-5618 0.68 0-1670 1.35 
32 0.2872 0.97 0.3365(-1) 2.31 
64 0.9493(-1) 1.60 0-3151(-2) 3.41 

100 8 0.9060 0.4249 

Table 111. Average relative errors for prob- 
lem 1, P = 100 

h-l CDS SCHOS Gartland 

8 1*18(1) 8.13(-2) 6.81(-3) 
16 1-46(-1) 1.25(-2) 4.94(-3) 
32 1.61(-2) 1*26(-3) 1*90(-3) 
64 2.23(-3) 1.79(-4) 5.71(-4) 

In Table I the maximum relative errors for P = 10, 20, 40 and 100 for h = 1/32 show that 
the errors due to UDS range between 9 and 23 per cent, whereas the CDS gives acceptable 
results for P s 4 0  but not for P =  100. The errors for SCHOS remain 5 4  per cent. As 
expected, the maximum relative errors occur near the corners at x = 1 in all cases. 

In Table 11, the maximum absolute errors for different values of h are given. Numerical 
estimates for the order of the discretization errors which are obtained by considering the 
errors due to mesh sizes h and 2h are also given. It is clear from the table that the order of 
SCHOS is about twice that of CDS. 

In order to compare our results with those given by Gartland, we give the average relative 
errors for P = 100 in Table 111. Clearly, the special method proposed by Gartland gives 
better results when the mesh is crude. However, as the mesh is refined, the errors due to 
SCHOS decrease rapidly and for h 5 1/32 the errors due to SCHOS are consistently smaller. 
The order of the Gartland method is not even as high as that of the CDS. 

Gartland proposed a boundary correction stencil to be used at mesh points on x = 1 - h. 
Once this correction is done, the results obtained by CDS, SCHOS and the Gartland scheme 
are comparable for h = 1/8. However, as the mesh is refined, the results given by SCHOS are 
better than those given by the other two methods. 

Test problem z4 
Consider the boundary value problem 
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Table IV. Maximum absolute errors and the orders for problem 2 

h-’ UDS Order CDS Order SCHOS Order 

e = o  8 
16 
32 

O = r r / 8  8 
16 
32 

@=TI4 8 
16 
32 

0-1227 
0-1604 
0.1256 
0-2886 
0.2268 
0.1394 
0.2467 
0.2035 
0.1218 

0.3420 
0.1532 1.15 

0.35 0.4449(-1) 1.78 
0.3688 

0.34 0.1286 1.52 
0.70 0.3484(-1) 1.88 

0.28 0*8031(-1) 1.82 
0.74 0-1950(-1) 2.04 

0.2833 

0.8280(-1) 
0.1323(-1) 2.65 
0.1123(-2) 3.55 
0*6931(-1) 
0*1019(-1) 2.77 
0.8128(-3) 3.64 
0.4932(-1) 
0-5977(-2) 3.04 
0-4066(-3) 3.88 

Comparison of (1) and (7) shows that p(x, y) = -P cos 8 and q(x, y) = -P sin 8 and f(x, y) = 
0. The exact solution is given by 

CXI 

1 B,, sinh [a,(l - x)] sin nrry 4 = e-P(xcosO+ysinO)/2 

n = l  

where 

cr: = n2rr2 + P2/4 

and 

(1 - y ) e - ~  sin sin n.rry dy 
0 

Bn =- 
sin ha,, .I(, 

This problem represents the convection of 8 (temperature or concentration) in a fluid moving 
with a uniform velocity at an angle 8 to the x-axis. For 8 = 0 a boundary layer develops on 
x = 1 as in the case of problem 1, whereas for 8 # 0, boundary layers develop on x = 1 and 
also y = 1 for P large. Numerical results obtained by using UDS are known to be affected 
adversely when the direction of the flow is not aligned with the direction of the finite 
difference grid. This is known as the grid orientation problem. We have chosen this problem 
to study whether the numerical solutions obtained by SCHOS are affected by the grid 
orientation. This problem has been studied by Stubley, Raithby and Strong in a recent 
paper4 in which they proposed a special method called QIS which uses a 9-point stencil. 

In Table IV we give the absolute maximum errors for P = 40, h = 1/8, 1/16 and 1/32 for 
8 = 0, rr/8 and rr/4. Estimates of the order of the method obtained from the numerical results 
are also given. Most of the observations made in the case of problem 1 remain valid for this 
problem as well. It is clearly seen that the results of UDS deteriorate as 8 increases, whereas 
this is not the case for both the CDS and the SCHOS. The results for 8 = rr/4 appear to be 
better than those for 8=0, however, this is due to a decrease in the effective transport 
number for 8 = rr/4. In any case the SCHOS is not affected by the grid orientation. As in the 
case of problem 1, the results obtained by using special methods such as QIS for this 
problem are more accurate than those obtained by SCHOS when the mesh is crude. 
However, as the mesh is refined, the results obtained by SCHOS improve rapidly. The 
maximum error over a coarse 7 x 7 mesh (h = 1/8) for P = 80 are given in Reference 4. For 
h = 1/32 the results given by SCHOS and QIS are comparable, whereas for h = 1/8 and 1/16, 
QIS results are better. 



648 M. M. GUFTA. R. P. MANOHAR AND J. W. STEPHENSON 

Table V. Maximum absolute errors for problem 3, equation (8) 

P h-' UDS Order CDS Order SCHOS Order 

100 8 0.1678 0.6174(-2) 0.3081(-2) 
16 0-9894(-1) 0.76 0.1633(-2) 1.92 0.2615(-3) 3.56 
32 0-5426(-1) 0.86 0.4154(-3) 1.97 0*1775(-4) 3.88 

16 0.1238 0.70 - 0.1845(-2) 2.36 
32 0.6819(-1) 0.86 - 0.1864(-3) 3.31 

0.9448(-2) 1000 8 0.2017 - 

Test problem 3 

where these functions are variables; thus in (1) let 
In problems 1 and 2 the coefficient functions were constants. Now we consider a problem 

with the exact solution 
u = xy(1- x)(l- y)er+y 

Numerical solutions for P = 100 and 1000 are given in Table V. For P = 1000 the CDS 
failed to converge with S.O.R. 

Instead of considering p ( x ,  y) and q(x, y) as first degree polynomials, we considered 
another problem with the exact solution the same as in (8) but p ( x ,  y)  = exp (x + y)  and 
q ( x ,  y) = l/exp (x + y). Here again the results were similar to those given for (8). The CDS 
did not converge for P >  100. 

4. CONCLUSIONS 

Several test problems have been solved using the single cell high order method proposed 
here. From the numerical experiments it appears that the scheme gives good results. Further 
testing over a wider range of the values of the parameters is necessary before its usefulness in 
practice is established. The scheme is simple, easy to implement and the resulting system of 
linear equations can be solved by iterative methods. The rate of convergence of our scheme 
is twice that of the central difference scheme and about 3 to 4 times that of the upwind 
difference scheme. The proposed scheme is not affected by the grid orientation nor does it 
introduce artificial viscosity. The method of derivation carried over to irregular meshes with 
some modifications. 

The difference scheme has been arrived at by approximating the solution locally by means 
of polynomials. Therefore, the accuracy of the numerical solutions will be affected for mesh 
sizes for which such an approximation is not sufficiently accurate. In particular when the 
convection is large compared with the diffusion and a boundary layer exists in which the 
solution varies exponentially, one could expect a deterioration of the numerical results if a 
crude mesh is used. This can be seen in problems 1 and 2 for the values of Ph >6.  

In the derivation of the scheme it is assumed that the solution of the problem is sufficiently 
smooth. If the smoothness condition is not satisfied, the order of the scheme drops and it 
m a y  give results no better than the lower order schemes. 
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The proposed scheme uses a 9-point stencil and hence requires additional computations as 
compared to the 5-point schemes. In order to compare methods for a given order of the 
error it is necessary to obtain work estimates in terms of arithmetic operations. Of course the 
rate of convergence of the iterative method also plays a decisive role in such estimates. 
Comparison of such estimates is under investigation. 

APPENDIX. DERIVATION OF THE SINGLE CELL HIGH ORDER 
DIFFERENCE SCHEMES FOR CONVECTION-DIFFUSION EQUATION 

The differential equation is 

U , + U y , + P ( X , Y ) U x + q ( X , Y ) U y = f ( x , Y )  (9) 

We assume that, locally, the solution u(x, y) and the functions p, q, f can be expressed by 
two-dimensional power series: 

Substituting (10) into (9) and comparing the coefficients of xiyJ, we get 

C',j = (i + l ) ( i  + 2)q+2,j + ( j  + 1)o' + 2)@,i+2 

+ 1 K - r +  l)Ar,s&+l-r,j-s + ~ - s +  l)~r,sai-r,j+1-sI (11) 
i s r , s s j  

The equations (11) constitute the constraints imposed by the differential equation (9) on the 
coefficients u.,,~, ciqj, and pi,j of the expansions (10). In particular, 

c0,o = 2(a2,0+ ao,2) + Ao,oa1,0+ P O , O ~ O , l  

c1,O = 6a3,0+ 2a1,2+ 2A0,0a2,0 + A l , O a l , O +  p O , O a l , l  + p l , O a O , l  

~ 0 . 1 ~  2a2,1 + 6ao,3 + Ao,oa1,1 + Ao,iai,o+ 2~0,0a0,2 + ~ o , i * o , i  

C2,o = 12a4,0+2%,2+ 3Ao,oa3,0+ 2~i,oaz,o+A2,0a1,0+ pO,oa2,1+ pl,oal,l+ p2,Oao.i 
(12) 

co,2 = 2a2,2 + 12a0,4+ A0.0a1.2 + A O , I ~ I , I  + A o , z ~ ~ , o  + ~ C L O , O ~ O , ~  + 2~0,1ao,z+ P O , ~ ~ O , I  

c1,i = 6a3,1+6ai,3 +2Ao,oa2.i+ Ai,oai, i  + Ai, iai ,o+ 2~0,0a1,2+ P O , I ~ I , I  + C L I , I ~ O , I  

The above six constraints ensure the satisfaction of the differential equation (9) for u = x'y' 
for i + j 5 4. The constraints involve 15 unknown values of a,,+ 0 I i + j 5 4. The remaining 
nine equations, relating the values of a,,j, are obtained by collocation on the nine points 0-8 
of the single cell of side 2h (see Figure 1). In particular, 

uN 3 u2 = a , ,  + ao,l h + ~ ~ , ~ h ~  + ao,3h3 + aO,4h4 + . . . 
uNE=u5= a o , o + ~ a l , o + ~ o , l ~ h + ~ a z , o + ~ ~ ~ ~ + ~ ~ , 2 ~ ~ 2 + .  

We use the notation 

ouo = u1 + uz+ ug+ u4 
nu0 = us + ug + u,+ ug 
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From (13) we obtain relations of the form 

Now, from (12) we have, 

(16) 

Neglecting terms of order h3, we obtain the well known upwind difference scheme of order 
h. 

If the terms containing h3 are eliminated in (16), we obtain 

(17) 

(18) - - 
The central difference scheme results when O(h4) terms are neglected in (18). This result 
cannot be improved any further without using more constraints from ( l l ) ,  (12). The two 
constraints involving c ~ , ~ ,  c ~ , ~  contain a3,0, a0,3 which also appear in the next set of 
constraints for c ~ , ~ ,  c ~ , ~ .  Using these constraints and relations in (13), (14), (15) we obtain, 

(19) 
Neglecting the terms of order h6 we get the fourth order difference scheme given by 
equation (2). The truncation error of this scheme is given by +h44(x, y )  where $(x, y j  
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represents the coefficient of h6 on the right hand side of (19). The function $(x, y )  is given by 
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